# CCNA R\&S: Introduction to Networks 

## Chapter 9:

## Subnetting IP Networks

Upon completion of this chapter you will be able to:

- Explain why routing is necessary for hosts on different subnets to communicate.
- Describe IP as a communication protocol used to identify a single device on a network.
- Given a network and subnet mask, calculate the number of host addresses available.
- Calculate the necessary subnet mask in order to accommodate a given number of hosts.
- Describe the benefits of variable length subnet masking (VLSM).
- Design and implement a hierarchical addressing scheme.
- Explain how IPv6 address assignments are implemented in a business netvork.


In this chapter, you will be learning how devices can be grouped into subnets, or smaller network groups, from a large network.

In this modeling activity, you are asked to think about a number you probably use every day, a number such as your telephone number. As you complete the activity, think about how your telephone number compares to strategies that network administrators might use to identify hosts for efficient data communication.

## Limited Broadcast

Source: 172.16.4.1<br>Destination: 255.255.255.255



The process of segmenting a network, by dividing it into multiple smaller network spaces, is called subnetting.

These sub-networks are called subnets. Network administrators can group devices and services into subnets that are determined by geographic location (perhaps the 3rd floor of a building), by organizational unit (perhaps the sales department), by device type (printers, servers, WAN), or any other division that makes sense for the network. Subnetting can reduce overall network traffic and improve network performance.

Communicating between Networks


A router is necessary for devices on different networks to communicate. Devices on a network use the router interface attached to their LAN as their default gateway. Traffic that is destined for a device on a remote network will be processed by the router and forwarded toward the destination. To determine if traffic is local or remote, the router uses the subnet mask.


Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

As discussed earlier, the private IP address range used on a LAN is the choice of the network administrator and needs careful consideration to be sure that enough host address will be available for the currently known hosts and for future expansion. Remember the private IP address ranges are:

- 10.0.0.0 with a subnet mask of 255.0.0.0
- 172.16.0.0 with a subnet mask of 255.240.0.0
- 192.168.0.0 with a subnet mask of 255.255.0.0

Knowing your IP address requirements will determine the range or ranges of host addresses you implement. Subnetting the selected private IP address space will provide the host addresses to cover your network needs.


In the upcoming examples you will see subnetting based on address blocks that have subnet masks of 255.0.0.0, 255.255.0.0, and 255.255.255.0.

### 9.1.3.1 Basic Subnetting

### 192.168.1.0/24 Network

| Address | 192 | 168 | 1 | 0000 | 0000 |
| ---: | :---: | :---: | :---: | :---: | :---: |
| Mask | 255 | 255 | 255 | 0000 | 0000 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Network Portion |  |  | Host Portion |

Figure 1, the 192.168.1.0/24 network has 24 bits in the network portion and 8 bits in the host portion, which is indicated with the subnet mask 255.255 .255 .0 or /24 notation.

With no subnetting, this network supports a single LAN interface. If an additional LAN is needed, the network would need to be subnetted.

With no host bits borrowed, the host portion of both the network address and mask are all 0 bits.

Borrow 1 bit from the host portion of the address.


The borrowed bit value is 0 for the Net 0 address.


The new subnets have the SAME subnet mask.

```
Mask 255. 255. 255. 1000 0000
```

```
Mask 255. 255. 255. 1000 0000
```

Figure 2, 1 bit is borrowed from the most significant bit (leftmost bit) in the host portion, thus extending the network portion to 25 bits.

This creates 2 subnets identified by using a 0 in the borrowed bit for the first network and a 1 in the borrowed bit for the second network.

The subnet mask for both networks uses a 1 in the borrowed bit position to indicate that this bit is now part of the network portion.

### 9.1.3.1 Basic Subnetting

## Decimal Representation



Borrowing 1 bit creates 2 subnets with the same mask

in Figure 3, when we convert the binary octet to decimal we see that the first subnet address is 192.168.1.0 and the second subnet address is 192.168.1.128.

Because a bit has been borrowed, the subnet mask for each subnet is 255.255 .255 .128 or $/ 25$.

## Address Range for 192.168.1.0/25 Subnet



The first host address for the 192.168.1.0/25 network is 192.168.1.1, and the last host address is 192.168.1.126.

## Address Range for 192.168.1.128/25 Subnet



The first host address for the 192.168.1.128/25 network is 192.168.1.129, and the last host address is 192.168.1.254.

### 9.1.3.2 Subnets in Use



```
R1(config) #interface gigabitethernet 0/0
R1(config-if)#ip address 192.168.1.1 255.255.255.128
R1(config-if) #exit
R1(config)#interface gigabitethernet 0/1
R1(config-if)*ip address 192.168.1.129 255.255.255.128
```


### 9.1.3.2 Subnets in Use



$2: x$

## Gene if


 for lie acciocnate ikserthos.

```
& Use the following PP address:
PP eddrece:
Subret mapk:
Defout gstewoy:
```

    : Use the Tiowng \(\mathrm{C}=6\) sigive sdresesi
    Bufrintrogsamiry
    Atarnatr thes oxpmit
    F Velatale vetrogificon eutt
    
## Calculate Number of Subnets

```
Subnets = 2An
(where n = bits borrowed)
```

192. 168. 169. 0000000


$$
2^{\wedge} 1=2 \text { subnets }
$$

## Calculate Number of Hosts

$$
\text { Hosts }=2^{A} n
$$

$$
\text { (where } n=\text { host bits remaining) }
$$

$$
\text { 192. 168. 1. } 0 \quad 000 \quad 0000
$$

$$
7 \text { bits remain in host field }
$$

$2^{\wedge} 7=128$ hosts per subnet
$2^{\wedge} 7-2=126$ valid hosts per subnet.

### 9.1.3.4 Creating 4 Subnets

Borrowing 2 Bits


Borrowing 2 bits creates 4 subnets:


All 4 subnets use the same mask:

Mask 255. 255. 255. 11000000 Mask:255.255.255.192

## Calculate Number of Hosts

```
Hosts = 2An
(where n = host bits remaining)
192. 168. 1. 00 00 0000
```



```
\(2^{\wedge} 6=64\) hosts per subnet
\(2^{\wedge} 6-2=62\) valid hosts per subnet
```


## Address Range for 192.168.1.0/26 Subnet

Network Address
192. 168. 1. $0000 \quad 0000=192.168 .1 .0$

First Host Address
192. 168. 1. $00000001=192.168 .1 .1$

Last Host Address
192. 168. 1. $00111110=192.168 .1 .62$

Broadcast Address
192. 168. 1. $0011 \quad 1111=192.168 .1 .63$

Address Ranges Nets 0-2

| Net 0 | Network | 192. | 168. | 1. | 00 | 00 | 0000 | 192.168.1.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | First | 192. | 168. | 1. | 00 | 00 | 0001 | 192.168.1.1 |
|  | Last | 192. | 168. | 1. | 00 | 11 | 1110 | 192.168.1.62 |
|  | Broadcast | 192. | 168. | 1. | 00 | 11 | 1111 | 192.168.1.63 |
| Net 1 | Network | 192. | 168. | 1. | 01 | 00 | 0000 | 192.168.1.64 |
|  | First | 192. | 168. | 1. | 01 | 00 | 0001 | 192.168 .1 .65 |
|  | Last | 192. | 168. | 1. | 01 | 11 | 1110 | 192.168.1.126 |
|  | Broadcast | 192. | 168. | 1. | 01 | 11 | 1111 | 192.168.1.127 |
| Net 2 | Network | 192. | 168. | 1. | 10 | 00 | 0000 | 192.168.1.128 |
|  | First | 192. | 168. | 1. | 10 | 00 | 0001 | 192.168.1.129 |
|  | Last | 192. | 168. | 1. | 10 | 11 | 1110 | 192.168.1.190 |
|  | Broadcast | 192. | 168. | 1. | 10 | 11 | 1111 | 192.168.1.191 |

### 9.1.3.4 Creating 4 Subnets



```
R1(config)#interface gigabitethernet 0/0
R1(config=if)#ip address 192.168.1.1 255.255.255.192
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if)#ip address 192.168.1.65 255.255.255.192
R1(config-if)#exit
R1(config) #interface serial 0/0/0
R1 (config-if)#ip address 192.168.1.129 255.255.255.192
```


### 9.1.3.5 Creating 8 Subnets

| Net 0 | Network | 192. | 168. | 1. | 000 | 0 | 0000 | 192.168 .1 .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | First | 192. | 168. | 1. | 000 | 0 | 0001 | 192.168.1.1 |
|  | Last | 192. | 168. | 1. | 000 | 1 | 1110 | 192.168.1.30 |
|  | Broadcast | 192. | 168. | 1. | 000 | 1 | 1111 | 192.168.1.31 |
| Net 1 | Network | 192. | 168. | 1. | 001 | 0 | 0000 | 192.168.1.32 |
|  | First | 192. | 168. | 1. | 001 | 0 | 0001 | 192.168 .1 .33 |
|  | Last | 192. | 168. | 1. | 001 | 1 | 1110 | 192.168.1.62 |
|  | Broadcast | 192. | 168. | 1. | 001 | 1 | 1111 | 192.168 .1 .63 |
| Net 2 | Network | 192. | 168. | 1. | 010 | 0 | 0000 | 192.168.1.64 |
|  | First | 192. | 168. | 1. | 010 | 0 | 0001 | 192.168 .1 .65 |
|  | Last | 192. | 168. | 1. | 010 | 1 | 1110 | 192.168.1.94 |
|  | Broadcast | 192. | 168. | 1. | 010 | 1 | 1111 | 192.168 .1 .95 |
| Net 3 | Network | 192. | 168. | 1. | 011 | 0 | 0000 | 192.168 .1 .96 |
|  | First | 192. | 168. | 1. | 011 | 0 | 0001 | 192.168.1.97 |
|  | Last | 192. | 168. | 1. | 011 | 1 | 1110 | 192.168.1.126 |
|  | Broadcast | 192. | 168. | 1. | 011 | 1 | 1111 | 192.168.1.127 |


| Net 4 | Network | 192. | 168. | 1. | 100 | 0 | 0000 | 192.168.1.128 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | First | 192. | 168. | 1. | 100 | 0 | 0001 | 192.168.1.129 |
|  | Last | 192. | 168. | 1. | 100 | 1 | 1110 | 192.168.1.158 |
|  | Broadcast | 192. | 168. | 1. | 100 | 1 | 1111 | 192.168.1.159 |
| Net 5 | Network | 192. | 168. | 1. | 101 | 0 | 0000 | 192.168.1.160 |
|  | First | 192. | 168. | 1. | 101 | 0 | 0001 | 192.168.1.161 |
|  | Last | 192. | 168. | 1. | 101 | 1 | 1110 | 192.168.1.190 |
|  | Broadcast | 192. | 168. | 1. | 101 | 1 | 1111 | 192.168.1.191 |
| Net 6 | Network | 192. | 168. | 1. | 110 | 0 | 0000 | 192.168 .1 .192 |
|  | First | 192. | 168. | 1. | 110 | 0 | 0001 | 192.168.1.193 |
|  | Last | 192. | 168. | 1. | 110 | 1 | 1110 | 192.168 .1 .222 |
|  | Broadcast | 192. | 168. | 1. | 110 | 1 | 1111 | 192.168 .1 .223 |
| Net 7 | Network | 192. | 168. | 1. | 111 | 0 | 0000 | 192.168 .1 .224 |
|  | First | 192. | 168. | 1. | 111 | 0 | 0001 | 192.168 .1 .225 |
|  | Last | 192. | 168. | 1. | 111 | 1 | 1110 | 192.168.1.254 |
|  | Broadcast | 192. | 168. | 1. | 111 | 1 | 1111 | 192.168.1.255 |

### 9.1.3.5 Creating 8 Subnets

## Interface Address Configuration



| Host Address | 192 | 168 | 190 | 112 |
| :--- | :---: | :---: | :---: | :---: |
| Subnet Mask | 255 | 255 | 255 | 192 |
| Host Address in binary | 11000000 | 10101000 | 10111110 | 01110000 |
| Subnet Mask in binary | 1111111 | 11111111 | 11111111 | 11000000 |
| Network Address in binary | $\mathbf{1 1 0 0 0 0 0 0}$ | $\mathbf{1 0 1 0 1 0 0 0}$ | $\mathbf{1 0 1 1 1 1 1 0}$ | $\mathbf{0 1 0 0 0 0 0 0}$ |
| Network Address in decimal | $\mathbf{1 9 2}$ | $\mathbf{1 6 8}$ | $\mathbf{1 9 0}$ | $\mathbf{6 4}$ |


|  | 192 | 168 | 150 | 221 |
| :--- | :---: | :---: | :---: | :---: |
| Network Address | 255 | 255 | 255 | 240 |
| Subnet Mask | 11000000 | 10101000 | 10010110 | 11011101 |
| Network Address in binary | 11111111 | 11111111 | 11111111 | 11110000 |
| Subnet Mask in binary |  |  | 14 |  |
| Number of Valid Hosts |  |  |  |  |


| Network Address in decimal | 192 | 168 | 101 | 192 |
| :--- | :---: | :---: | :---: | :---: |
| Subnet Mask in decimal | 255 | 255 | 255 | 240 |
| Network address in binary | 11000000 | 10101000 | 01100101 | 11000000 |
| Subnet Mask in binary | 11111111 | 11111111 | 11111111 | 11110000 |
| First Usable Host IP Address in <br> decimal | $\mathbf{1 9 2}$ | 168 | 101 | 193 |
| Last Usable Host IP Address in <br> decimal | $\mathbf{1 9 2}$ | $\mathbf{1 6 8}$ | $\mathbf{1 0 1}$ | $\mathbf{2 0 6}$ |
| Broadcast Address in decimal | $\mathbf{1 9 2}$ | $\mathbf{1 6 8}$ | $\mathbf{1 0 1}$ | $\mathbf{2 0 7}$ |
| Next Network Address in decimal | $\mathbf{1 9 2}$ | $\mathbf{1 6 8}$ | $\mathbf{1 0 1}$ | $\mathbf{2 0 8}$ |



## Calculating Class B Subnets

## Thanks for your attention!!

## Cisco Systems <br> 

